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ABSTRACT 

Propagation of weak spherical diverging shock wave through in ideal gas having solid body rotation have been 

investigated by Chisnell-Chester-Whitham method. The medium becomes inhomogeneous on account of solid 

body rotation assuming in initial density distribution law as :   = I exp(r/ro), where I  is the density at the 

axis of symmetry,  is a constant and ro  is a non-dimension constant, the analytical expression for shock  velocity 

and shock strength have been obtained. Finally, the expression for the pressure, the density and the particle 

velocity immediately behind the shock have also been derived. It is observed that the smaller value of the 

propagation distance r, the shock velocity must decreases with shock propagation for the large value of r, however 

is must increase with further advancement of the shock. 

 

Introduction- In recent years many techniques have been used to tackle propagation of shock wave. Using 

similarity method the propagation of spherical shock waves through a rotating gas has received a considerable 

attention in the recent past [1-2] since the similarity method is based on a serious expression in powers of 

inverse square of mach Number, which for small value represent strong shock, the conclusion drawn from 

these investigation should be reliable for only strong shock. In this paper, the effort is made to investigate the 

propagation diverging spherical weak shock through a rotating gas using Chisnell-Chestor-Whitman (6, 7, 8) 

method. Assuming an initial density at the axis of symmetry, 

     = I exp (r/ro),  

 where I is the density at the axis of symmetry,  is a constant and ro  is non dimensional  constant, the 

analytical expression for shock velocity and shock strength have been derived. 

             Finally, the expression for the pressure the density and the particle velocity immediate behind the 

shock have also been obtained. 

Analyitical Expression For Shock Velocity And Shock Strength - The basic equations governing the 

spherical symmetric flow of a gas enclosed by the shock front are written as  
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Where u, v, are the radial and azimuthally components of particle velocity, P,   and   respectively the 

pressure, the density and adiabatic of the gas. 

If,  Po and o denoted the undisturbed value of pressure and density in front of the shock wave, the 

boundary conditions for weak shock can be written as : 

 P = Po { 1 + 
4γ

γ+1
 }    …….(a) 

 

  = o { 1 + 
4

γ+1
 }    …….(b) 

 

 u =  
4 ao

γ+1
      …….(c)   [ 2 ] 

 

 U =  aoM     …….(d) 

 

Where, ao is the sound velocity in undisturbed medium and we take Mach number as :  M = 1 +   

      [3] 

Where  is  a parameter and negligible in comparison to unity (i.e.,  <<1). 

 

For diverging shock the characteristic form  of system of equation (1) (i.e., the form in which equation 

contains derivatives in only one direction in (r, t plane)) is, 

 dp + cdu + 2
C2u

u+c
 
dr

r
  - 

Cv2

u+c
 
dr

r
  = 0,       [ 4 ] 

 

Where, C (= √γP/ρ ) is the local sound velocity immediately behind the shock. 

 

 The equilibrium state of the gas is assumed to be specified by the conditions 
∂

∂t
 =0 =u and v = ro 

where o is the constant angular velocity. Consequently, the equilibrium condition prevailing in front of 

the shock can be written as  

        
1

ρo
  

dPo

dr
  -  r o2 = 0,         [ 5 ] 

Assuming the initial density distribution law as  

     = I exp (r/ro),      [ 6 ] 

     P=  
o2


ro

⁄
  (r – ro/)  I exp (r/ro),    [ 7 ] 

     a= o  [(r – ro/) .  ro/]½     [ 8 ] 

Now substituting the shock conditions, (2) in relation and respective values of various qualities, we have 
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On integration equation (9) yields, 

  = K r-1 (r - 
ro


)-¾  exp (- r/2ro)      [ 10 ] 
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Where K is a constant of integration. From equation (2), the expression for the shock velocity and shock 

strength can be written as : 

Shock Velocity  

 U = B1o (r - 
ro


) ½  + B2o r-1 (r - 

ro


)-¼  exp (r/2ro)   [ 11 ] 

  Where B1 = (  ro /)½ and B2 = KB1 

Shock Strength 

   
U

ao
 = 1 + K r-1 (r - 

ro


)-¾  exp (- r/2ro)     [ 12 ] 

DISCUSSION : Expression (11) for shock velocity, representing the propagation of a diverging spherical 

shock wave through a rotating gas, contains two types of terms involving the propagation distance r- one 

with positive power and other with negative power of r. Therefore, for low values of r the one with negative 

power happens to be the dominant term, whereas for large values of r it is the other term which primarily 

determines the shock velocity. Consequently, the shock velocity initially decrease as the shock propagates 

and attains a minimum value for certain propagation distance rUmin given by the equation 

rUmin = ro [2(B1 – B2) +   √(2B1 − B2 )2 +  16 B2  / 4B2   [ 13 ] 

 

thereafter it increases. This agrees with earlier results (1, 8) for strong spherical shock in a rotating gas. 

Similar variation in shock velocity for weak spherical shock through self gravitation gas has also been 

reported by (9). The occurrence of exponential term in the expression permits the parameters governing the 

propagation to attain theoretically infinite values. 

 It is also noted from expression (11) that shock velocity increases with increase in o. Expression (12) 

shows that shock strength continuously decreases as shock propagates. 

 Finally the expression for the pressure, the density and the particle velocity immediately behind the 

shock can be written as : 
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